weka.gui.beans.CostBenefitAnalysis Source Code | www.androidadb.com

..Souce Code of weka.gui.beans.

/*

*

This program is free software; you can redistribute it and/or modify

*

it under the terms of the GNU General Public License as published by

*

the Free Software Foundation; either version 2 of the License, or

*

(at your option) any later version.

*

*

This program is distributed in the hope that it will be useful,

*

but WITHOUT ANY WARRANTY; without even the implied warranty of

*

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the

*

GNU General Public License for more details.

*

*

You should have received a copy of the GNU General Public License

*

along with this program; if not, write to the Free Software

*

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

/*

*

CostBenefitAnalysis.java

*

Copyright (C) 2009 University of Waikato, Hamilton, New Zealand

*

*/

package weka.gui.beans;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.Dimension;

import java.awt.FlowLayout;

import java.awt.GridLayout;

import java.awt.Graphics;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.FocusEvent;

import java.awt.event.FocusListener;

import java.beans.EventSetDescriptor;

import java.beans.PropertyVetoException;

import java.beans.VetoableChangeListener;

import java.beans.beancontext.BeanContext;

import java.beans.beancontext.BeanContextChild;

import java.beans.beancontext.BeanContextChildSupport;

import java.io.Serializable;

import java.util.Enumeration;

import java.util.Vector;

import javax.swing.BorderFactory;

import javax.swing.ButtonGroup;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JRadioButton;

import javax.swing.JSlider;

import javax.swing.JTextField;

import javax.swing.SwingConstants;

import javax.swing.event.ChangeEvent;

import javax.swing.event.ChangeListener;

import weka.classifiers.evaluation.ThresholdCurve;

import weka.core.Attribute;

import weka.core.FastVector;

import weka.core.Instance;

import weka.core.DenseInstance;

import weka.core.Instances;

import weka.core.Utils;

import weka.gui.Logger;

import weka.gui.visualize.VisualizePanel;

import weka.gui.visualize.Plot2D;

import weka.gui.visualize.PlotData2D;

/**

* Bean that aids in analyzing cost/benefit tradeoffs.

*

* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)

* @version $Revision: 6137 $

*/

public class CostBenefitAnalysis extends JPanel

implements BeanCommon, ThresholdDataListener, Visible, UserRequestAcceptor,

Serializable, BeanContextChild {

/** For serialization */

private static final long serialVersionUID = 8647471654613320469L;

protected BeanVisual m_visual;

protected transient JFrame m_popupFrame;

protected boolean m_framePoppedUp = false;

private transient AnalysisPanel m_analysisPanel;

/**

* True if this bean’s appearance is the design mode appearance

*/

protected boolean m_design;

/**

* BeanContex that this bean might be contained within

*/

protected transient BeanContext m_beanContext = null;

/**

* BeanContextChild support

*/

protected BeanContextChildSupport m_bcSupport =

new BeanContextChildSupport(this);

/**

* The object sending us data (we allow only one connection at any one time)

*/

protected Object m_listenee;

/**

* Inner class for displaying the plots and all control widgets.

*

* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)

*/

protected static class AnalysisPanel extends JPanel {

/** For serialization */

private static final long serialVersionUID = 5364871945448769003L;

/** Displays the performance graphs(s) */

protected VisualizePanel m_performancePanel = new VisualizePanel();

/** Displays the cost/benefit (profit/loss) graph */

protected VisualizePanel m_costBenefitPanel = new VisualizePanel();

/**

* The class attribute from the data that was used to generate

* the threshold curve

*/

protected Attribute m_classAttribute;

/** Data for the threshold curve */

protected PlotData2D m_masterPlot;

/** Data for the cost/benefit curve */

protected PlotData2D m_costBenefit;

/** The size of the points being plotted */

protected int[] m_shapeSizes;

/** The index of the previous plotted point that was highlighted */

protected int m_previousShapeIndex = -1;

/** The slider for adjusting the threshold */

protected JSlider m_thresholdSlider = new JSlider(0,100,0);

protected JRadioButton m_percPop = new JRadioButton(“% of Population”);

protected JRadioButton m_percOfTarget = new JRadioButton(“% of Target (recall)”);

protected JRadioButton m_threshold = new JRadioButton(“Score Threshold”);

protected JLabel m_percPopLab = new JLabel();

protected JLabel m_percOfTargetLab = new JLabel();

protected JLabel m_thresholdLab = new JLabel();

// Confusion matrix stuff

protected JLabel m_conf_predictedA = new JLabel(“Predicted (a)”, SwingConstants.RIGHT);

protected JLabel m_conf_predictedB = new JLabel(“Predicted (b)”, SwingConstants.RIGHT);

protected JLabel m_conf_actualA = new JLabel(” Actual (a):”);

protected JLabel m_conf_actualB = new JLabel(” Actual (b):”);

protected ConfusionCell m_conf_aa = new ConfusionCell();

protected ConfusionCell m_conf_ab = new ConfusionCell();

protected ConfusionCell m_conf_ba = new ConfusionCell();

protected ConfusionCell m_conf_bb = new ConfusionCell();

// Cost matrix stuff

protected JLabel m_cost_predictedA = new JLabel(“Predicted (a)”, SwingConstants.RIGHT);

protected JLabel m_cost_predictedB = new JLabel(“Predicted (b)”, SwingConstants.RIGHT);

protected JLabel m_cost_actualA = new JLabel(” Actual (a)”);

protected JLabel m_cost_actualB = new JLabel(” Actual (b)”);

protected JTextField m_cost_aa = new JTextField(“0.0”, 5);

protected JTextField m_cost_ab = new JTextField(“1.0”, 5);

protected JTextField m_cost_ba = new JTextField(“1.0”, 5);

protected JTextField m_cost_bb = new JTextField(“0.0” ,5);

protected JButton m_maximizeCB = new JButton(“Maximize Cost/Benefit”);

protected JButton m_minimizeCB = new JButton(“Minimize Cost/Benefit”);

protected JRadioButton m_costR = new JRadioButton(“Cost”);

protected JRadioButton m_benefitR = new JRadioButton(“Benefit”);

protected JLabel m_costBenefitL = new JLabel(“Cost: “, SwingConstants.RIGHT);

protected JLabel m_costBenefitV = new JLabel(“0”);

protected JLabel m_randomV = new JLabel(“0”);

protected JLabel m_gainV = new JLabel(“0”);

protected int m_originalPopSize;

/** Population text field */

protected JTextField m_totalPopField = new JTextField(6);

protected int m_totalPopPrevious;

/** Classification accuracy */

protected JLabel m_classificationAccV = new JLabel(“-“);

// Only update curve & stats if values in cost matrix have changed

protected double m_tpPrevious;

protected double m_fpPrevious;

protected double m_tnPrevious;

protected double m_fnPrevious;

/**

* Inner class for handling a single cell in the confusion matrix.

* Displays the value, value as a percentage of total population and

* graphical depiction of percentage.

*

* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)

*/

protected static class ConfusionCell extends JPanel {

/** For serialization */

private static final long serialVersionUID = 6148640235434494767L;

private JLabel m_conf_cell = new JLabel(“-“, SwingConstants.RIGHT);

JLabel m_conf_perc = new JLabel(“-“, SwingConstants.RIGHT);

private JPanel m_percentageP;

protected double m_percentage = 0;

public ConfusionCell() {

setLayout(new BorderLayout());

setBorder(BorderFactory.createEtchedBorder());

add(m_conf_cell, BorderLayout.NORTH);

m_percentageP = new JPanel() {

public void paintComponent(Graphics gx) {

super.paintComponent(gx);

if (m_percentage > 0) {

gx.setColor(Color.BLUE);

int height = this.getHeight();

double width = this.getWidth();

int barWidth = (int)(m_percentage * width);

gx.fillRect(0, 0, barWidth, height);

}

}

};

Dimension d = new Dimension(30,5);

m_percentageP.setMinimumSize(d);

m_percentageP.setPreferredSize(d);

JPanel percHolder = new JPanel();

percHolder.setLayout(new BorderLayout());

percHolder.add(m_percentageP, BorderLayout.CENTER);

percHolder.add(m_conf_perc, BorderLayout.EAST);

add(percHolder, BorderLayout.SOUTH);

}

/**

* Set the value of a cell.

*

* @param cellValue the value of the cell

* @param max the max (for setting value as a percentage)

* @param scaleFactor scale the value by this amount

* @param precision precision for the percentage value

*/

public void setCellValue(double cellValue, double max, double scaleFactor, int precision) {

if (!Utils.isMissingValue(cellValue)) {

m_percentage = cellValue / max;

} else {

m_percentage = 0;

}

m_conf_cell.setText(Utils.doubleToString((cellValue * scaleFactor), 0));

m_conf_perc.setText(Utils.doubleToString(m_percentage * 100.0, precision) + “%”);

// refresh the percentage bar

m_percentageP.repaint();

}

}

public AnalysisPanel() {

setLayout(new BorderLayout());

m_performancePanel.setShowAttBars(false);

m_performancePanel.setShowClassPanel(false);

m_costBenefitPanel.setShowAttBars(false);

m_costBenefitPanel.setShowClassPanel(false);

Dimension size = new Dimension(500, 400);

m_performancePanel.setPreferredSize(size);

m_performancePanel.setMinimumSize(size);

size = new Dimension(500, 400);

m_costBenefitPanel.setMinimumSize(size);

m_costBenefitPanel.setPreferredSize(size);

m_thresholdSlider.addChangeListener(new ChangeListener() {

public void stateChanged(ChangeEvent e) {

updateInfoForSliderValue((double)m_thresholdSlider.getValue() / 100.0);

}

});

JPanel plotHolder = new JPanel();

plotHolder.setLayout(new GridLayout(1,2));

plotHolder.add(m_performancePanel);

plotHolder.add(m_costBenefitPanel);

add(plotHolder, BorderLayout.CENTER);

JPanel lowerPanel = new JPanel();

lowerPanel.setLayout(new BorderLayout());

ButtonGroup bGroup = new ButtonGroup();

bGroup.add(m_percPop);

bGroup.add(m_percOfTarget);

bGroup.add(m_threshold);

ButtonGroup bGroup2 = new ButtonGroup();

bGroup2.add(m_costR);

bGroup2.add(m_benefitR);

ActionListener rl = new ActionListener() {

public void actionPerformed(ActionEvent e) {

if (m_costR.isSelected()) {

m_costBenefitL.setText(“Cost: “);

} else {

m_costBenefitL.setText(“Benefit: “);

}

double gain = Double.parseDouble(m_gainV.getText());

gain = -gain;

m_gainV.setText(Utils.doubleToString(gain, 2));

}

};

m_costR.addActionListener(rl);

m_benefitR.addActionListener(rl);

m_costR.setSelected(true);

m_percPop.setSelected(true);

JPanel threshPanel = new JPanel();

threshPanel.setLayout(new BorderLayout());

JPanel radioHolder = new JPanel();

radioHolder.setLayout(new FlowLayout());

radioHolder.add(m_percPop);

radioHolder.add(m_percOfTarget);

radioHolder.add(m_threshold);

threshPanel.add(radioHolder, BorderLayout.NORTH);

threshPanel.add(m_thresholdSlider, BorderLayout.SOUTH);

JPanel threshInfoPanel = new JPanel();

threshInfoPanel.setLayout(new GridLayout(3,2));

threshInfoPanel.add(new JLabel(“% of Population: “, SwingConstants.RIGHT));

threshInfoPanel.add(m_percPopLab);

threshInfoPanel.add(new JLabel(“% of Target: “, SwingConstants.RIGHT));

threshInfoPanel.add(m_percOfTargetLab);

threshInfoPanel.add(new JLabel(“Score Threshold: “, SwingConstants.RIGHT));

threshInfoPanel.add(m_thresholdLab);

JPanel threshHolder = new JPanel();

threshHolder.setBorder(BorderFactory.createTitledBorder(“Threshold”));

threshHolder.setLayout(new BorderLayout());

threshHolder.add(threshPanel, BorderLayout.CENTER);

threshHolder.add(threshInfoPanel, BorderLayout.EAST);

lowerPanel.add(threshHolder, BorderLayout.NORTH);

// holder for the two matrixes

JPanel matrixHolder = new JPanel();

matrixHolder.setLayout(new GridLayout(1,2));

// confusion matrix

JPanel confusionPanel = new JPanel();

confusionPanel.setLayout(new GridLayout(3,3));

confusionPanel.add(m_conf_predictedA);

confusionPanel.add(m_conf_predictedB);

confusionPanel.add(new JLabel()); // dummy

confusionPanel.add(m_conf_aa);

confusionPanel.add(m_conf_ab);

confusionPanel.add(m_conf_actualA);

confusionPanel.add(m_conf_ba);

confusionPanel.add(m_conf_bb);

confusionPanel.add(m_conf_actualB);

JPanel tempHolderCA = new JPanel();

tempHolderCA.setLayout(new BorderLayout());

tempHolderCA.setBorder(BorderFactory.createTitledBorder(“Confusion Matrix”));

tempHolderCA.add(confusionPanel, BorderLayout.CENTER);

JPanel accHolder = new JPanel();

accHolder.setLayout(new FlowLayout(FlowLayout.LEFT));

accHolder.add(new JLabel(“Classification Accuracy: “));

accHolder.add(m_classificationAccV);

tempHolderCA.add(accHolder, BorderLayout.SOUTH);

matrixHolder.add(tempHolderCA);

// cost matrix

JPanel costPanel = new JPanel();

costPanel.setBorder(BorderFactory.createTitledBorder(“Cost Matrix”));

costPanel.setLayout(new BorderLayout());

JPanel cmHolder = new JPanel();

cmHolder.setLayout(new GridLayout(3, 3));

cmHolder.add(m_cost_predictedA);

cmHolder.add(m_cost_predictedB);

cmHolder.add(new JLabel()); // dummy

cmHolder.add(m_cost_aa);

cmHolder.add(m_cost_ab);

cmHolder.add(m_cost_actualA);

cmHolder.add(m_cost_ba);

cmHolder.add(m_cost_bb);

cmHolder.add(m_cost_actualB);

costPanel.add(cmHolder, BorderLayout.CENTER);

FocusListener fl = new FocusListener() {

public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {

if (constructCostBenefitData()) {

try {

m_costBenefitPanel.setMasterPlot(m_costBenefit);

m_costBenefitPanel.validate(); m_costBenefitPanel.repaint();

} catch (Exception ex) {

ex.printStackTrace();

}

updateCostBenefit();

}

}

};

ActionListener al = new ActionListener() {

public void actionPerformed(ActionEvent e) {

if (constructCostBenefitData()) {

try {

m_costBenefitPanel.setMasterPlot(m_costBenefit);

m_costBenefitPanel.validate(); m_costBenefitPanel.repaint();

} catch (Exception ex) {

ex.printStackTrace();

}

updateCostBenefit();

}

}

};

m_cost_aa.addFocusListener(fl);

m_cost_aa.addActionListener(al);

m_cost_ab.addFocusListener(fl);

m_cost_ab.addActionListener(al);

m_cost_ba.addFocusListener(fl);

m_cost_ba.addActionListener(al);

m_cost_bb.addFocusListener(fl);

m_cost_bb.addActionListener(al);

m_totalPopField.addFocusListener(fl);

m_totalPopField.addActionListener(al);

JPanel cbHolder = new JPanel();

cbHolder.setLayout(new BorderLayout());

JPanel tempP = new JPanel();

tempP.setLayout(new GridLayout(3, 2));

tempP.add(m_costBenefitL);

tempP.add(m_costBenefitV);

tempP.add(new JLabel(“Random: “, SwingConstants.RIGHT));

tempP.add(m_randomV);

tempP.add(new JLabel(“Gain: “, SwingConstants.RIGHT));

tempP.add(m_gainV);

cbHolder.add(tempP, BorderLayout.NORTH);

JPanel butHolder = new JPanel();

butHolder.setLayout(new GridLayout(2, 1));

butHolder.add(m_maximizeCB);

butHolder.add(m_minimizeCB);

m_maximizeCB.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

findMaxMinCB(true);

}

});

m_minimizeCB.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

findMaxMinCB(false);

}

});

cbHolder.add(butHolder, BorderLayout.SOUTH);

costPanel.add(cbHolder, BorderLayout.EAST);

JPanel popCBR = new JPanel();

popCBR.setLayout(new GridLayout(1, 2));

JPanel popHolder = new JPanel();

popHolder.setLayout(new FlowLayout(FlowLayout.LEFT));

popHolder.add(new JLabel(“Total Population: “));

popHolder.add(m_totalPopField);

JPanel radioHolder2 = new JPanel();

radioHolder2.setLayout(new FlowLayout(FlowLayout.RIGHT));

radioHolder2.add(m_costR);

radioHolder2.add(m_benefitR);

popCBR.add(popHolder);

popCBR.add(radioHolder2);

costPanel.add(popCBR, BorderLayout.SOUTH);

matrixHolder.add(costPanel);

lowerPanel.add(matrixHolder, BorderLayout.SOUTH);

//

popAccHolder.add(popHolder);

//popAccHolder.add(accHolder);

/*JPanel lowerPanel2 = new JPanel();

lowerPanel2.setLayout(new BorderLayout());

lowerPanel2.add(lowerPanel, BorderLayout.NORTH);

lowerPanel2.add(popAccHolder, BorderLayout.SOUTH); */

add(lowerPanel, BorderLayout.SOUTH);

}

private void findMaxMinCB(boolean max) {

double maxMin = (max)

? Double.NEGATIVE_INFINITY

: Double.POSITIVE_INFINITY;

Instances cBCurve = m_costBenefit.getPlotInstances();

int maxMinIndex = 0;

for (int i = 0; i < cBCurve.numInstances(); i++) {Instance current = cBCurve.instance(i);if (max) {if (current.value(1) > maxMin) {

maxMin = current.value(1);

maxMinIndex = i;

}

} else {

if (current.value(1) < maxMin) {maxMin = current.value(1);maxMinIndex = i;}}}// set the slider to the correct positionint indexOfSampleSize =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.SAMPLE_SIZE_NAME).index();int indexOfPercOfTarget =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.RECALL_NAME).index();int indexOfThreshold =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.THRESHOLD_NAME).index();int indexOfMetric;if (m_percPop.isSelected()) {indexOfMetric = indexOfSampleSize;} else if (m_percOfTarget.isSelected()) {indexOfMetric = indexOfPercOfTarget;} else {indexOfMetric = indexOfThreshold;}double valueOfMetric = m_masterPlot.getPlotInstances().instance(maxMinIndex).value(indexOfMetric);valueOfMetric *= 100.0;// set the approximate location of the sliderm_thresholdSlider.setValue((int)valueOfMetric);// make sure the actual values relate to the true min/max rather// than being off due to slider location error.updateInfoGivenIndex(maxMinIndex);}private void updateCostBenefit() {double value = (double)m_thresholdSlider.getValue() / 100.0;Instances plotInstances = m_masterPlot.getPlotInstances();int indexOfSampleSize =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.SAMPLE_SIZE_NAME).index();int indexOfPercOfTarget =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.RECALL_NAME).index();int indexOfThreshold =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.THRESHOLD_NAME).index();int indexOfMetric;if (m_percPop.isSelected()) {indexOfMetric = indexOfSampleSize;} else if (m_percOfTarget.isSelected()) {indexOfMetric = indexOfPercOfTarget;} else {indexOfMetric = indexOfThreshold;}int index = findIndexForValue(value, plotInstances, indexOfMetric);updateCBRandomGainInfo(index);}private void updateCBRandomGainInfo(int index) {double requestedPopSize = m_originalPopSize;try {requestedPopSize = Double.parseDouble(m_totalPopField.getText());} catch (NumberFormatException e) {}double scaleFactor = requestedPopSize / m_originalPopSize;double CB = m_costBenefit.getPlotInstances().instance(index).value(1);m_costBenefitV.setText(Utils.doubleToString(CB,2));double totalRandomCB = 0.0;Instance first = m_masterPlot.getPlotInstances().instance(0);double totalPos = first.value(m_masterPlot.getPlotInstances().attribute(ThresholdCurve.TRUE_POS_NAME).index()) * scaleFactor;double totalNeg = first.value(m_masterPlot.getPlotInstances().attribute(ThresholdCurve.FALSE_POS_NAME)) * scaleFactor;double posInSample = (totalPos * (Double.parseDouble(m_percPopLab.getText()) / 100.0));double negInSample = (totalNeg * (Double.parseDouble(m_percPopLab.getText()) / 100.0));double posOutSample = totalPos - posInSample;double negOutSample = totalNeg - negInSample;double tpCost = 0.0;try {tpCost = Double.parseDouble(m_cost_aa.getText());} catch (NumberFormatException n) {}double fpCost = 0.0;try {fpCost = Double.parseDouble(m_cost_ba.getText());} catch (NumberFormatException n) {}double tnCost = 0.0;try {tnCost = Double.parseDouble(m_cost_bb.getText());} catch (NumberFormatException n) {}double fnCost = 0.0;try {fnCost = Double.parseDouble(m_cost_ab.getText());} catch (NumberFormatException n) {}totalRandomCB += posInSample * tpCost;totalRandomCB += negInSample * fpCost;totalRandomCB += posOutSample * fnCost;totalRandomCB += negOutSample * tnCost;m_randomV.setText(Utils.doubleToString(totalRandomCB, 2));double gain = (m_costR.isSelected())? totalRandomCB - CB: CB - totalRandomCB;m_gainV.setText(Utils.doubleToString(gain, 2));// update classification rateInstance currentInst = m_masterPlot.getPlotInstances().instance(index);double tp = currentInst.value(m_masterPlot.getPlotInstances().attribute(ThresholdCurve.TRUE_POS_NAME).index());double tn = currentInst.value(m_masterPlot.getPlotInstances().attribute(ThresholdCurve.TRUE_NEG_NAME).index());m_classificationAccV.setText(Utils.doubleToString((tp + tn) / (totalPos + totalNeg) * 100.0, 4) + "%");}private void updateInfoGivenIndex(int index) {Instances plotInstances = m_masterPlot.getPlotInstances();int indexOfSampleSize =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.SAMPLE_SIZE_NAME).index();int indexOfPercOfTarget =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.RECALL_NAME).index();int indexOfThreshold =m_masterPlot.getPlotInstances().attribute(ThresholdCurve.THRESHOLD_NAME).index();// update labelsm_percPopLab.setText(Utils.doubleToString(100.0 * plotInstances.instance(index).value(indexOfSampleSize), 4));m_percOfTargetLab.setText(Utils.doubleToString(100.0 * plotInstances.instance(index).value(indexOfPercOfTarget), 4));m_thresholdLab.setText(Utils.doubleToString(plotInstances.instance(index).value(indexOfThreshold), 4));/*if (m_percPop.isSelected()) {m_percPopLab.setText(Utils.doubleToString(100.0 * value, 4));} else if (m_percOfTarget.isSelected()) {m_percOfTargetLab.setText(Utils.doubleToString(100.0 * value, 4));} else {m_thresholdLab.setText(Utils.doubleToString(value, 4));}*/// Update the highlighted point on the graphs */if (m_previousShapeIndex >= 0) {

m_shapeSizes[m_previousShapeIndex] = 1;

}

m_shapeSizes[index] = 10;

m_previousShapeIndex = index;

// Update the confusion matrix

//

double totalInstances =

int tp = plotInstances.attribute(ThresholdCurve.TRUE_POS_NAME).index();

int fp = plotInstances.attribute(ThresholdCurve.FALSE_POS_NAME).index();

int tn = plotInstances.attribute(ThresholdCurve.TRUE_NEG_NAME).index();

int fn = plotInstances.attribute(ThresholdCurve.FALSE_NEG_NAME).index();

Instance temp = plotInstances.instance(index);

double totalInstances = temp.value(tp) + temp.value(fp) + temp.value(tn) + temp.value(fn);

// get the value out of the total pop field (if possible)

double requestedPopSize = totalInstances;

try {

requestedPopSize = Double.parseDouble(m_totalPopField.getText());

} catch (NumberFormatException e) {}

m_conf_aa.setCellValue(temp.value(tp), totalInstances,

requestedPopSize / totalInstances, 2);

m_conf_ab.setCellValue(temp.value(fn), totalInstances,

requestedPopSize / totalInstances, 2);

m_conf_ba.setCellValue(temp.value(fp), totalInstances,

requestedPopSize / totalInstances, 2);

m_conf_bb.setCellValue(temp.value(tn), totalInstances,

requestedPopSize / totalInstances, 2);

updateCBRandomGainInfo(index);

repaint();

}

private void updateInfoForSliderValue(double value) {

int indexOfSampleSize =

m_masterPlot.getPlotInstances().attribute(ThresholdCurve.SAMPLE_SIZE_NAME).index();

int indexOfPercOfTarget =

m_masterPlot.getPlotInstances().attribute(ThresholdCurve.RECALL_NAME).index();

int indexOfThreshold =

m_masterPlot.getPlotInstances().attribute(ThresholdCurve.THRESHOLD_NAME).index();

int indexOfMetric;

if (m_percPop.isSelected()) {

indexOfMetric = indexOfSampleSize;

} else if (m_percOfTarget.isSelected()) {

indexOfMetric = indexOfPercOfTarget;

} else {

indexOfMetric = indexOfThreshold;

}

Instances plotInstances = m_masterPlot.getPlotInstances();

int index = findIndexForValue(value, plotInstances, indexOfMetric);

updateInfoGivenIndex(index);

}

private int findIndexForValue(double value, Instances plotInstances, int indexOfMetric) {

// binary search

// threshold curve is sorted ascending in the threshold (thus

// descending for recall and pop size)

int index = -1;

int lower = 0;

int upper = plotInstances.numInstances() – 1;

int mid = (upper – lower) / 2;

boolean done = false;

while (!done) {

if (upper – lower <= 1) {// choose the one closest to the valuedouble comp1 = plotInstances.instance(upper).value(indexOfMetric);double comp2 = plotInstances.instance(lower).value(indexOfMetric);if (Math.abs(comp1 - value) < Math.abs(comp2 - value)) {index = upper;} else {index = lower;}break;}double comparisonVal = plotInstances.instance(mid).value(indexOfMetric);if (value > comparisonVal) {

if (m_threshold.isSelected()) {

lower = mid;

mid += (upper – lower) / 2;

} else {

upper = mid;

mid -= (upper – lower) / 2;

}

} else if (value < comparisonVal) {if (m_threshold.isSelected()) {upper = mid;mid -= (upper - lower) / 2;} else {lower = mid;mid += (upper - lower) / 2;}} else {index = mid;done = true;}}// now check for ties in the appropriate directionif (!m_threshold.isSelected()) {while (index + 1 < plotInstances.numInstances()) {if (plotInstances.instance(index + 1).value(indexOfMetric) ==plotInstances.instance(index).value(indexOfMetric)) {index++;} else {break;}}} else {while (index - 1 >= 0) {

if (plotInstances.instance(index – 1).value(indexOfMetric) ==

plotInstances.instance(index).value(indexOfMetric)) {

index–;

} else {

break;

}

}

}

return index;

}

/**

* Set the threshold data for the panel to use.

*

* @param data PlotData2D object encapsulating the threshold data.

* @param classAtt the class attribute from the original data used to generate

* the threshold data.

* @throws Exception if something goes wrong.

*/

public synchronized void setDataSet(PlotData2D data, Attribute classAtt) throws Exception {

// make a copy of the PlotData2D object

m_masterPlot = new PlotData2D(data.getPlotInstances());

boolean[] connectPoints = new boolean[m_masterPlot.getPlotInstances().numInstances()];

for (int i = 1; i < connectPoints.length; i++) {connectPoints[i] = true;}m_masterPlot.setConnectPoints(connectPoints);m_masterPlot.m_alwaysDisplayPointsOfThisSize = 10;setClassForConfusionMatrix(classAtt);m_performancePanel.setMasterPlot(m_masterPlot);m_performancePanel.validate(); m_performancePanel.repaint();m_shapeSizes = new int[m_masterPlot.getPlotInstances().numInstances()];for (int i = 0; i < m_shapeSizes.length; i++) {m_shapeSizes[i] = 1;}m_masterPlot.setShapeSize(m_shapeSizes);constructCostBenefitData();m_costBenefitPanel.setMasterPlot(m_costBenefit);m_costBenefitPanel.validate(); m_costBenefitPanel.repaint();m_totalPopPrevious = 0;m_fpPrevious = 0;m_tpPrevious = 0;m_tnPrevious = 0;m_fnPrevious = 0;m_previousShapeIndex = -1;// set the total population sizeInstance first = m_masterPlot.getPlotInstances().instance(0);double totalPos = first.value(m_masterPlot.getPlotInstances().attribute(ThresholdCurve.TRUE_POS_NAME).index());double totalNeg = first.value(m_masterPlot.getPlotInstances().attribute(ThresholdCurve.FALSE_POS_NAME));m_originalPopSize = (int)(totalPos + totalNeg);m_totalPopField.setText("" + m_originalPopSize);m_performancePanel.setYIndex(5);m_performancePanel.setXIndex(10);m_costBenefitPanel.setXIndex(0);m_costBenefitPanel.setYIndex(1);//System.err.println(m_masterPlot.getPlotInstances());updateInfoForSliderValue((double)m_thresholdSlider.getValue() / 100.0);}private void setClassForConfusionMatrix(Attribute classAtt) {m_classAttribute = classAtt;m_conf_actualA.setText(" Actual (a): " + classAtt.value(0));m_conf_actualA.setToolTipText(classAtt.value(0));String negClasses = "";for (int i = 1; i < classAtt.numValues(); i++) {negClasses += classAtt.value(i);if (i < classAtt.numValues() - 1) {negClasses += ",";}}m_conf_actualB.setText(" Actual (b): " + negClasses);m_conf_actualB.setToolTipText(negClasses);}private boolean constructCostBenefitData() {double tpCost = 0.0;try {tpCost = Double.parseDouble(m_cost_aa.getText());} catch (NumberFormatException n) {}double fpCost = 0.0;try {fpCost = Double.parseDouble(m_cost_ba.getText());} catch (NumberFormatException n) {}double tnCost = 0.0;try {tnCost = Double.parseDouble(m_cost_bb.getText());} catch (NumberFormatException n) {}double fnCost = 0.0;try {fnCost = Double.parseDouble(m_cost_ab.getText());} catch (NumberFormatException n) {}double requestedPopSize = m_originalPopSize;try {requestedPopSize = Double.parseDouble(m_totalPopField.getText());} catch (NumberFormatException e) {}double scaleFactor = 1.0;if (m_originalPopSize != 0) {scaleFactor = requestedPopSize / m_originalPopSize;}if (tpCost == m_tpPrevious && fpCost == m_fpPrevious &&tnCost == m_tnPrevious && fnCost == m_fnPrevious &&requestedPopSize == m_totalPopPrevious) {return false;}// First construct some Instances for the curveFastVector fv = new FastVector();fv.addElement(new Attribute("Sample Size"));fv.addElement(new Attribute("Cost/Benefit"));Instances costBenefitI = new Instances("Cost/Benefit Curve", fv, 100);// process the performance data to make this curveInstances performanceI = m_masterPlot.getPlotInstances();for (int i = 0; i < performanceI.numInstances(); i++) {Instance current = performanceI.instance(i);double[] vals = new double[2];vals[0] = current.value(10); // sample sizevals[1] = (current.value(0) * tpCost+ current.value(1) * fnCost+ current.value(2) * fpCost+ current.value(3) * tnCost) * scaleFactor;Instance newInst = new DenseInstance(1.0, vals);costBenefitI.add(newInst);}costBenefitI.compactify();// now set up the plot datam_costBenefit = new PlotData2D(costBenefitI);m_costBenefit.m_alwaysDisplayPointsOfThisSize = 10;m_costBenefit.setPlotName("Cost/benefit curve");boolean[] connectPoints = new boolean[costBenefitI.numInstances()];for (int i = 0; i < connectPoints.length; i++) {connectPoints[i] = true;}try {m_costBenefit.setConnectPoints(connectPoints);m_costBenefit.setShapeSize(m_shapeSizes);} catch (Exception ex) {// ignore}m_tpPrevious = tpCost;m_fpPrevious = fpCost;m_tnPrevious = tnCost;m_fnPrevious = fnCost;return true;}}/*** Constructor.*/public CostBenefitAnalysis() {java.awt.GraphicsEnvironment ge =java.awt.GraphicsEnvironment.getLocalGraphicsEnvironment();if (!ge.isHeadless()) {appearanceFinal();}}/*** Global info for this bean** @return a String value

*/

public String globalInfo() {

return “Visualize performance charts (such as ROC).”;

}

/**

* Accept a threshold data event and set up the visualization.

* @param e a threshold data event

*/

public void acceptDataSet(ThresholdDataEvent e) {

try {

setCurveData(e.getDataSet(), e.getClassAttribute());

} catch (Exception ex) {

System.err.println(“[CostBenefitAnalysis] Problem setting up visualization.”);

ex.printStackTrace();

}

}

/**

* Set the threshold curve data to use.

*

* @param curveData a PlotData2D object set up with the curve data.

* @param origClassAtt the class attribute from the original data used to

* generate the curve.

* @throws Exception if somthing goes wrong during the setup process.

*/

public void setCurveData(PlotData2D curveData, Attribute origClassAtt)

throws Exception {

if (m_analysisPanel == null) {

m_analysisPanel = new AnalysisPanel();

}

m_analysisPanel.setDataSet(curveData, origClassAtt);

}

public BeanVisual getVisual() {

return m_visual;

}

public void setVisual(BeanVisual newVisual) {

m_visual = newVisual;

}

public void useDefaultVisual() {

m_visual.loadIcons(BeanVisual.ICON_PATH+”DefaultDataVisualizer.gif”,

BeanVisual.ICON_PATH+”DefaultDataVisualizer_animated.gif”);

}

public Enumeration enumerateRequests() {

Vector newVector = new Vector(0);

if (m_analysisPanel != null) {

if (m_analysisPanel.m_masterPlot != null) {

newVector.addElement(“Show analysis”);

}

}

return newVector.elements();

}

public void performRequest(String request) {

if (request.compareTo(“Show analysis”) == 0) {

try {

// popup visualize panel

if (!m_framePoppedUp) {

m_framePoppedUp = true;

final javax.swing.JFrame jf =

new javax.swing.JFrame(“Cost/Benefit Analysis”);

jf.setSize(1000,600);

jf.getContentPane().setLayout(new BorderLayout());

jf.getContentPane().add(m_analysisPanel, BorderLayout.CENTER);

jf.addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent e) {

jf.dispose();

m_framePoppedUp = false;

}

});

jf.setVisible(true);

m_popupFrame = jf;

} else {

m_popupFrame.toFront();

}

} catch (Exception ex) {

ex.printStackTrace();

m_framePoppedUp = false;

}

} else {

throw new IllegalArgumentException(request

+ ” not supported (Cost/Benefit Analysis”);

}

}

public void addVetoableChangeListener(String name, VetoableChangeListener vcl) {

m_bcSupport.addVetoableChangeListener(name, vcl);

}

public BeanContext getBeanContext() {

return m_beanContext;

}

public void removeVetoableChangeListener(String name,

VetoableChangeListener vcl) {

m_bcSupport.removeVetoableChangeListener(name, vcl);

}

protected void appearanceFinal() {

removeAll();

setLayout(new BorderLayout());

setUpFinal();

}

protected void setUpFinal() {

if (m_analysisPanel == null) {

m_analysisPanel = new AnalysisPanel();

}

add(m_analysisPanel, BorderLayout.CENTER);

}

protected void appearanceDesign() {

removeAll();

m_visual = new BeanVisual(“CostBenefitAnalysis”,

BeanVisual.ICON_PATH+”ModelPerformanceChart.gif”,

BeanVisual.ICON_PATH

+”ModelPerformanceChart_animated.gif”);

setLayout(new BorderLayout());

add(m_visual, BorderLayout.CENTER);

}

public void setBeanContext(BeanContext bc) throws PropertyVetoException {

m_beanContext = bc;

m_design = m_beanContext.isDesignTime();

if (m_design) {

appearanceDesign();

} else {

java.awt.GraphicsEnvironment ge =

java.awt.GraphicsEnvironment.getLocalGraphicsEnvironment();

if (!ge.isHeadless()) {

appearanceFinal();

}

}

}

/**

* Returns true if, at this time,

* the object will accept a connection via the named event

*

* @param eventName the name of the event in question

* @return true if the object will accept a connection

*/

public boolean connectionAllowed(String eventName) {

return (m_listenee == null);

}

/**

* Notify this object that it has been registered as a listener with

* a source for recieving events described by the named event

* This object is responsible for recording this fact.

*

* @param eventName the event

* @param source the source with which this object has been registered as

* a listener

*/

public void connectionNotification(String eventName, Object source) {

if (connectionAllowed(eventName)) {

m_listenee = source;

}

}

/**

* Returns true if, at this time,

* the object will accept a connection according to the supplied

* EventSetDescriptor

*

* @param esd the EventSetDescriptor

* @return true if the object will accept a connection

*/

public boolean connectionAllowed(EventSetDescriptor esd) {

return connectionAllowed(esd.getName());

}

/**

* Notify this object that it has been deregistered as a listener with

* a source for named event. This object is responsible

* for recording this fact.

*

* @param eventName the event

* @param source the source with which this object has been registered as

* a listener

*/

public void disconnectionNotification(String eventName, Object source) {

if (m_listenee == source) {

m_listenee = null;

}

}

/**

* Get the custom (descriptive) name for this bean (if one has been set)

*

* @return the custom name (or the default name)

*/

public String getCustomName() {

return m_visual.getText();

}

/**

* Returns true if. at this time, the bean is busy with some

* (i.e. perhaps a worker thread is performing some calculation).

*

* @return true if the bean is busy.

*/

public boolean isBusy() {

return false;

}

/**

* Set a custom (descriptive) name for this bean

*

* @param name the name to use

*/

public void setCustomName(String name) {

m_visual.setText(name);

}

/**

* Set a logger

*

* @param logger a weka.gui.Logger value

*/

public void setLog(Logger logger) {

// we don’t need to do any logging

}

/**

* Stop any processing that the bean might be doing.

*/

public void stop() {

// nothing to do here

}

public static void main(String[] args) {

try {

Instances train = new Instances(new java.io.BufferedReader(new java.io.FileReader(args[0])));

train.setClassIndex(train.numAttributes() – 1);

weka.classifiers.evaluation.ThresholdCurve tc =

new weka.classifiers.evaluation.ThresholdCurve();

weka.classifiers.evaluation.EvaluationUtils eu =

new weka.classifiers.evaluation.EvaluationUtils();

//weka.classifiers.Classifier classifier = new weka.classifiers.functions.Logistic();

weka.classifiers.Classifier classifier = new weka.classifiers.bayes.NaiveBayes();

FastVector predictions = new FastVector();

eu.setSeed(1);

predictions.appendElements(eu.getCVPredictions(classifier, train, 10));

Instances result = tc.getCurve(predictions, 0);

PlotData2D pd = new PlotData2D(result);

pd.m_alwaysDisplayPointsOfThisSize = 10;

boolean[] connectPoints = new boolean[result.numInstances()];

for (int i = 1; i < connectPoints.length; i++) {connectPoints[i] = true;}pd.setConnectPoints(connectPoints);final javax.swing.JFrame jf =new javax.swing.JFrame("CostBenefitTest");jf.setSize(1000,600);//jf.pack();jf.getContentPane().setLayout(new BorderLayout());final CostBenefitAnalysis.AnalysisPanel analysisPanel =new CostBenefitAnalysis.AnalysisPanel();jf.getContentPane().add(analysisPanel, BorderLayout.CENTER);jf.addWindowListener(new java.awt.event.WindowAdapter() {public void windowClosing(java.awt.event.WindowEvent e) {jf.dispose();System.exit(0);}});jf.setVisible(true);analysisPanel.setDataSet(pd, train.classAttribute());} catch (Exception ex) {ex.printStackTrace();}}}Related Class of weka.gui.beans.CostBenefitAnalysisCopyright © 2011 www.androidadb.com. All rights reserved. All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc. Contact . See also:|||

Read More Post